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 1 INTRODUCTION

1.1 Problem Statement

Test Level 2 (TL-2) bridge rails are often acceptable for urban applications where pedestrian

traffic can be a significant concern.  In this situation, it is often desirable to separate pedestrians

from the vehicular traffic by placing the sidewalk behind the bridge rail.  Consequently, pedestrians

must be moved behind the approach guardrail far upstream of the bridge rail or the end of the bridge

rail will be exposed to traffic.  It is frequently impractical to place sidewalks behind an approach

guardrail.  Therefore, the end of the bridge rail is often treated with a costly crash cushion in this

situation.

Recent testing has generated a patented TL-2 longitudinal barrier that has ends that taper to

the bridge deck.  While the shape of this barrier has been patented, the terminal has not.  Due to prior

testing of very similar barrier concepts, the patent for this shape is not believed to be viable.  While

it would be possible to utilize this previously accepted barrier and challenge the validity of the

patent, it was decided that it would be more cost efficient to develop a barrier shape that falls outside

of the boundaries of the patent and then take advantage of the sloped-end treatment testing

performed to preclude additional testing of the terminal.  The patent is based on a barrier traffic-side

face that makes less than a 90 degree angle with the pavement to allow the top of the barrier to

extend out toward traffic.  Many barriers have incorporated small extensions at the top which would

accomplish the same objective of localizing tire forces as this “flower pot” design does.  This feature

will have no effect on the performance of the tapered end treatment.  Therefore, it should be possible

to develop a nonproprietary TL-2 bridge rail design and gain approval for a tapered end treatment

without testing the terminal again.
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1.2 Objective

The objective of the research project was to design a nonproprietary, 508-mm high concrete

bridge rail and evaluate its safety performance through full-scale crash testing.  The bridge rail

system was to be evaluated according to the TL-2 safety performance criteria set forth in the

National Cooperative Highway Research Program (NCHRP) Report No. 350, Recommended

Procedures for the Safety Performance Evaluation of Highway Features (1).

1.3 Scope

The research objective was achieved by performing several tasks.  First, a literature review

was performed on previously crash tested low-profile bridge railing systems.  Next, a design phase

was undertaken to determine the shape of the barrier.  After the final design was completed, the

bridge rail system was fabricated and constructed at the Midwest Roadside Safety Facility’s

(MwRSF’s) outdoor test site.  A full-scale vehicle crash test was then performed using a ¾-ton

pickup truck, weighing approximately 2,000 kg, at a target impact speed and angle of 70.0 km/hr

and 25 degrees, respectively.  Finally, the test results were analyzed, evaluated, and documented.

Conclusions and recommendations were then made that pertain to the safety performance of the

bridge railing system.
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2 LITERATURE REVIEW

Historically, very little research has been performed on the development and crash testing

of low-profile barrier rails and terminals.  More specifically, only two low-profile concrete bridge

rails and one barrier end treatment have been evaluated by full-scale crash testing (2-4).  The

advantages of these systems are that they provide redirective capability for certain applications and

enhanced visibility when compared to conventional 813-mm tall barriers.

2.1 Low-Profile Concrete Bridge Rails

In January 1991, the Texas Transportation Institute (TTI) and the Texas Department of

Transportation developed a low-profile portable concrete barrier (PCB) (2).  The low-profile PCB

measures 508-mm tall and is produced in 6.10-m long segments.  The low-profile PCB was

developed for both temporary and permanent configurations and tested according to modified

criteria found in NCHRP Report No. 230, Recommended Procedures for the Safety Performance

Evaluation of Highway Appurtenances (5).  It should be noted that a ¾-ton pickup truck test was

used in lieu of the sedan test.  Both the small car and the pickup truck full-scale vehicle crash tests

met the NCHRP Report No. 230 criteria. 

In 1993, NCHRP Report No. 350 was implemented thereby requiring the low-profile PCB,

which was acceptable according to the NCHRP Report No. 230 criteria, to be re-evaluated according

to the new safety performance criteria.  According to NCHRP Report No. 350, a longitudinal barrier

must be subjected to two full-scale vehicle crash tests, specifically an 820-kg small car impacting

with a speed of 70.0 km/hr and an angle of 20 degrees and a 2,000-kg pickup truck impacting with

a speed of 70.0 km/hr and an angle of 25 degrees.  The first test involved a 2,043-kg pickup that

impacted the low-profile PCB at a speed of 71.4 km/hr and at an angle of 26.1 degrees.  These test
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conditions are about the same as those specified for test designation 2-11 in NCHRP Report No.

350.  The second test involved an 817-kg small car impacting with a speed of 73.5 km/hr and at an

angle of 21.3 degrees.  These test conditions are about the same as those specified for test

designation 2-10 in NCHRP Report No. 350.  For both full-scale crash tests, the vehicles were

smoothly redirected and the data collected fell within the acceptable limits of the occupant and

vehicle deceleration criteria found in NCHRP Report No. 350.  Therefore, the previously conducted

test results sufficiently demonstrated that the safety performance of the low-profile PCB successfully

met the NCHRP Report No. 350 test level 2 criteria (3) and is suitable for use on most local and

collector roads and many work zones as defined in NCHRP Report No. 350.

The second low-profile work-zone curb system was developed by the University of Florida’s

Department of Civil and Coastal Engineering (4).  This low-profile work-zone barrier system

measures 457-mm tall and is produced in 3.66-m segments that has a truncated slanted triangular

cross section.  The low-profile work-zone curb system was developed and tested according to

NCHRP Report No. 350 for use in roadside work-zone situations.  Both the small car and the pickup

truck full-scale vehicle crash tests met the NCHRP Report No. 350 criteria.  One advantage of this

barrier is that its configuration does not require barrier to roadway anchorage since it utilizes inertial

resistance to redirect impacting vehicles.  It should be noted that end terminal testing was not

undertaken in this research.

2.2 Barrier End Treatment

TTI also developed and tested a low-profile end treatment system for use with the low-

profile PCB (3).  The end treatment is produced in 6.10-m long segments and is 508-mm high at the

connection end to match the low-profile PCB.  The 508-mm height is maintained for 1.52-m from
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the connection end.  Along the remaining 4.57 m of length, the height is reduced linearly from 508-

mm to 102-mm at the end of the terminal as the widths of the barrier top and bottom are

symmetrically tapered to maintain the negative slope along the entire length.

Five crash tests, including two redirection tests, were performed on the low-profile end

terminal.  One crash test, test no. 1949A-2, involved an 893-kg small car impacting the end

treatment at a speed of 72.6 km/hr and at an angle of 0.0 degrees.  The small car in this test impacted

the end treatment end-on with the centerline of the right wheel aligned with the centerline of the end

terminal.  The vehicle rode up the barrier and remained stable as it continued along a straight path

until it exited the main body of the low-profile PCB in a controlled manner.  Therefore, the results

of this test proved that the system performed successfully according to the test conditions of NCHRP

Report No. 350 Test Designation 2-30.

A second test, test no. 1949A-3, involved a 2,043-kg pickup impacting at a speed of 74.8

km/hr and at an angle of 0.0 degrees.  In this test, the pickup impacted the end treatment end-on with

the centerline of the vehicle aligned with the centerline of the end terminal.  While the vehicle rode

up the end treatment, the tires lost contact with the roadway surface.  Shortly there after, the vehicle

became airborne, but contacted the main body of the low-profile PCB prior to exiting the system

and remained stable.  Consequently, this test was successfully performed according to the test

conditions of NCHRP Report No. 350 Test Designation 2-31.

Another test on the  low-profile end treatment, test no. 414036-2, involved an 896-kg small

car impacting the end treatment at a speed of 68.9 km/hr and at an angle of 15.1 degrees.  The small

car in this test impacted the nose of the end treatment with the right quarter point of the vehicle

aligned with the centerline of the end treatment.  The vehicle pitched upward as the left-front tire
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rode up the end treatment.  As the vehicle continued over the end treatment, the left-front tire

dropped off of the backside of the system and the left-rear tire became airborne.  Subsequently, the

vehicle continued behind the system in a stable manner.  Thus, the results of this test proved that the

system performed successfully according to the test conditions of NCHRP Report No. 350 Test

Designation 2-32.

Redirection tests were also performed on the low-profile end treatment.  Due to the

subjective nature of choosing the critical impact point, two different crash tests were conducted to

assure that the critical impact point was accurately identified.  One redirection test on the low-profile

end treatment, test no. 1949A-1, involved an 893-kg small car impacting at a speed of 71.9 km/hr

and at an angle of 16.3 degrees.  The small car impacted the end treatment 1.98 m from the end.

While the vehicle was being redirected, it became slightly airborne and remained airborne until it

exited the system.  Upon exiting the system, the vehicle remained upright and stable.  Hence, the

results of this test proved that the system performed successfully according to the test conditions of

NCHRP Report No. 350 Test Designation 2-34.

Even though this system was successfully tested according to the test conditions of NCHRP

Report No. 350 Test Designation 2-34, it was believed that the critical impact point chosen may not

have been sufficient to fully comply with the criteria of Test Designation 2-34.  Therefore, another

test according to the NCHRP Report No. 350 Test Designation 2-34 criteria was performed on the

low-profile end treatment.  This test, test no. 414038-1, involved an 895-kg small car impacting at

a speed of 70.9 km/hr and at an angle of 15.8 degrees.  The vehicle impacted the end treatment 0.91

m from the end.  As the vehicle began to redirect, the right-rear tire rode up on the end treatment.

Shortly after the vehicle became parallel to the system with the right-rear tire on top of the end
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treatment, the rear of the vehicle yawed counter-clockwise (CCW) as it became airborne.

Continuing to yaw CCW, the rear tires contacted the top of the end treatment, and subsequently

rolled off the barrier resulting in the stable redirection of the small car.  Therefore, the results of this

test show that the low-profile end treatment performed satisfactorily according to the Test

Designation 2-34 criteria of NCHRP Report No. 350.  Previous test results on the low-profile end

treatment are summarized in Table 1.
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3 TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 Test Requirements

3.1.1 Longitudinal Barriers

Longitudinal barriers, such as low-profile bridge rails, must satisfy the requirements provided

in NCHRP Report No. 350 to be accepted for use on new construction projects or as a replacement

for existing systems when 3R projects are implemented where designs do not meet current safety

standards.  According to TL-2 of NCHRP Report No. 350, the bridge rail system must be subjected

to two full-scale vehicle crash tests: (1) Test Designation 2-10:  an 820-kg small car impacting at

a speed of 70.0 km/hr and at an angle of 20 degrees; and (2) Test Designation 2-11:  a 2,000-kg

pickup truck impacting at a speed of 70.0 km/hr and at an angle of 25 degrees.  However, low-height

rigid barriers struck by small cars have been shown to meet safety performance standards (2-4).

Therefore, the 820-kg small car crash test was deemed unnecessary for this project.  The test

conditions for TL-2 longitudinal barriers are summarized in Table 2.

3.1.2 Barrier End Treatments

The performance requirements in NCHRP Report No. 350 are considerably more involved

for terminals, such as the end treatments for low-profile bridge rails, than for the longitudinal barrier

itself.  According to TL-2 of NCHRP Report No. 350, the gating end treatment must be subjected

to seven different crash test conditions, which are discussed below and summarized in Table 2.

Test Designation 2-30: an 820-kg small car impacting the end treatment at a speed of 70
km/hr and at an angle of 0 degrees with the quarter point of the vehicle aligned with the
centerline of the end treatment.

Test Designation 2-31: a 2,000-kg pickup truck impacting the end treatment at a speed of 70
km/hr and 0 degrees with the centerline of the vehicle aligned with the centerline of the end
treatment.
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Test Designation 2-32: an 820-kg small car impacting the end treatment at a speed of 70
km/hr and at an angle of 15 degrees with the centerline of the vehicle aligned with the
centerline of the nose of the end treatment.

Test Designation 2-33: a 2,000-kg pickup truck impacting the end treatment at a speed of 70
km/hr and at an angle of 15 degrees with the centerline of the nose of the end treatment.

Test Designation 2-34: an 820-kg small car impacting the end treatment at a speed of 70
km/hr and at an angle of 15 degrees with the front corner of the vehicle aligned with the
critical impact point of the end treatment.

Test Designation 2-35: a 2,000-kg pickup truck impacting the end treatment at a speed of 70
km/hr and at an angle of 20 degrees with the front corner of the vehicle impacting at the
beginning of the length of need.

Test Designation 2-39: a 2,000-kg pickup truck impacting the end treatment at a speed of 70
km/hr and at an angle of 20 degrees from the reverse direction at the mid-length of the end
treatment.

From the previous testing performed by TTI, a low-profile end treatment was tested

successfully according to test designations 2-30, 2-31, 2-32, and 2-34 (3).  Furthermore, these tests

may be waived if the end treatment’s overall sloped geometry is identical to TTI’s successfully

tested low-profile end treatment.  In addition, test designation 2-33 is essentially a repeat of test

designation 2-32, except a 2,000-kg pickup truck is used instead of an 820-kg small car.  Under

these test conditions, the pickup truck impact would be less severe than the small car at the same

conditions.  Subsequently, it is believed that test designation 2-33 can also be waived.

For test designation 2-35, a 2,000-kg pickup truck is impacted at the beginning of the length

of need.  In the case of the low-profile bridge rail, the length of need was defined as the connection

point between the bridge rail and the end treatment or the point where the end treatment reaches its

maximum height.  Since the cross section of the end treatment at the connection point and the bridge

rail are the same, this test will essentially be a repeat of test designation 2-11 performed on the

bridge rail with a pickup impacting at an angle of 25 degrees and consequently may be waived.
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In addition to test designations 2-33 and 2-35, it is believed that test designation 2-39, a

reverse-direction impact with a pickup truck at an angle of 20 degrees and at the midpoint of the end

treatment, may be waived.  It is believed that for the specified test conditions of height of barrier at

the impact point, type of test vehicle, impact speed, and impact angle, the test results would be

acceptable.  Furthermore, the type of impacts simulated by these test conditions would be rare, and

it is believed that test designation 2-39 may be waived.  Therefore, it is believed that if the overall

geometry of the low-profile end treatment is identical to that of TTI’s barrier system, additional

crash testing of the end treatment would be unnecessary for this project.

3.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1)

structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision.  Criteria for

structural adequacy are intended to evaluate the ability of the bridge railing to contain, redirect, or

allow controlled vehicle penetration in a predictable manner.  Occupant risk evaluates the degree

of hazard to occupants in the impacting vehicle, including windshield damage.  Vehicle trajectory

after collision is a measure of the potential for the post-impact trajectory of the vehicle to cause

subsequent multi-vehicle accidents, thereby subjecting occupants of other vehicles to undue hazards

or to subject the occupants of the impacting vehicle to secondary collisions with other fixed objects.

These three evaluation criteria are defined in Table 3.  The full-scale vehicle crash tests were

conducted and reported in accordance with the procedures provided in NCHRP Report No. 350.
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Table 2. NCHRP Report No. 350 Test Level 2 Crash Test Conditions

Test
Article

Test
Designation

Test
Vehicle

Impact Conditions Evaluation
Criteria 1

Speed (km/hr) Angle (degrees)

Longitudinal
Barrier

2-10 820C 70 20 A,D,F,H,I,K,M

2-11 2000P 70 25 A,D,F,K,L,M

End
Treatment

2-30 820C 70 0 C,D,F,H,I,K,N

2-31 2000P 70 0 C,D,F,H,I,K,N

2-32 820C 70 15 C,D,F,H,I,K,N

2-33 2000P 70 15 C,D,F,H,I,K,N

2-34 820C 70 15 C,D,F,H,I,K,N

2-35 2000P 70 20 A,D,F,K,L,M

2-39 2000P 70 20 C,D,F,K,L,M,N

1 Evaluation criteria explained in Table 3.
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Table 3. NCHRP Report No. 350 Evaluation Criteria for Crash Tests (1)

Structural
Adequacy

A. Test article should contain and redirect the vehicle; the vehicle should not
penetrate, underride, or override the installation although controlled lateral
deflection of the test article is acceptable.

C. Acceptable test article performance may be by redirection, controlled
penetration, or controlled stopping of the vehicle.

Occupant
Risk

D. Detached elements, fragments or other debris from the test article should
not penetrate or show potential for penetrating the occupant compartment,
or present an undue hazard to other traffic, pedestrians, or personnel in a
work zone. Deformations of, or intrusions into, the occupant compartment
that could cause serious injuries should not be permitted.

F. The vehicle should remain upright during and after collision although
moderate roll, pitching, and yawing are acceptable.

H. Longitudinal and lateral occupant impact velocities should fall below the
preferred value of 9 m/s, or at least below the maximum allowable value
of 12 m/s.

I. Longitudinal and lateral occupant ridedown accelerations should fall below
the preferred value of 15 g’s, or at least below the maximum allowable
value of 20 g’s.

Vehicle
Trajectory

K. After collision it is preferable that the vehicle's trajectory not intrude into
adjacent traffic lanes.

L. The occupant impact velocity in the longitudinal direction should not
exceed 12 m/sec, and the occupant ridedown acceleration in the
longitudinal direction should not exceed 20 G’s.

M. The exit angle from the test article preferably should be less than 60
percent of test impact angle measured at time of vehicle loss of contact
with test device.

N. Vehicle trajectory behind the test article is acceptable.
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(1)

(2)

4 LOW-PROFILE BRIDGE RAIL DESIGN

4.1 Design Considerations

The development of a low-height, concrete bridge railing required the consideration of

several key factors, such as design impact load, economy, minimum barrier height, front-face

geometry, and barrier end termination.  Each of these factors will be discussed in greater detail in

the following sections.

4.1.1 Design Impact Load

The design of the low-height bridge railing required an estimate of the dynamic lateral

impact force applied to the railing.  Two common methods were used: (1) an approximate method

to predict the lateral impact force using a mathematical model taken from NCHRP Report No. 86

(6) and the 1977 AASHTO Barrier Guide (7), and (2) an approximate method using impulse -

momentum equations and the coefficient of restitution.

The first method or mathematical model (6, 7) is presented in Equations 1 and 2 by:

and

where Flat. ave. = average lateral impact force (lbs)
Flat. peak = peak lateral impact force (lbs)
W = vehicle weight (4,409 lbs)
VI = impact velocity (63.79 ft/sec)
2 = impact angle (25 degrees)
g = acceleration due to gravity (32.2 ft/sec2)
AL = distance from vehicle's front end to center of mass (8.66 ft)
2B = vehicle width (6.5 ft)
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(3)

(4)

D = lateral displacement of railing (assumed 0 ft)
DF = dynamic factor (B/2 to 2)

The equations above estimate the average and peak forces that are applied to the vehicle from the

point of initial impact until the vehicle becomes parallel to the barrier.  An estimate of the duration

of this phase of impact, )t, is expressed by Equation 3 (6).

For a 4,409-lb (2,000-kg) pickup impacting a bridge railing at a speed of 43.5 mph (70 km/hr) and

an angle of 25 degrees, Flat. ave can be shown to be 14,829 lbs (65,963 N) and Flat. peak ranges from

23,294 lbs to 29,658 lbs (103,615 to 131,926 N). It is predicted, using Equation 3, that the vehicle

will become parallel to the barrier approximately 0.249 sec after initial impact.  The vehicle would

be expected to move approximately 14.3 ft (4.36 m) down the rail during this time.

Impulse - momentum equations and the coefficient of restitution can also be used to estimate

the lateral impact force.  The coefficient of restitution, e, is the ratio between the pre-impact and

post-impact velocities as shown in Equation 4.  The coefficient of restitution is a measure of the

energy absorbed by vehicle and barrier deformations.  Higher values indicate less energy absorption

and higher impulses imparted to the vehicle.  Since the coefficient of restitution cannot be greater

than 1, this value gives an upper bound on the impulse imparted on the vehicle and hence yields a

measure of the maximum force that can be applied to the barrier.

where VA1 = velocity of auto before impact (ft/sec)
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(5)

(6)

(7)

(8)

(9)

VA2 = velocity of auto after impact (ft/sec)
VB1 = velocity of barrier before impact (ft/sec)
VB2 = velocity of barrier after impact (ft/sec)

The impulse, or change in momentum during the impact, is estimated using equations 5

through 7.

where I = total impulse
F = impact force function (lbs)
t1 = initial time of impact (sec)
t2 = final time of impact (sec)
MI = momentum of objects before impact (lb-sec)
MF = momentum of objects after impact (lb-sec)
mA = mass of vehicle (lb-sec2/ft)
mB = mass of barrier (lb-sec2/ft)

For an oblique impact between a vehicle and a rigid longitudinal barrier (i.e., mass of barrier

infinitely large and velocity of barrier always zero, as shown in Figure 1(a)), Equation 4 can be

simplified to:

For an impact at 43.5 mph (70 km/hr) and 25 degrees, VA1 is as follows:
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(b)

(a)

Figure 1. (a) Impact Schematic; and (b) Saw-Tooth Forcing Function
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(10)

(11)

(12)

(13)

Using the coefficient of restitution, e = 1.0, the conservation of momentum in the x-direction, and

the x-component of VA1 in Equation 9, the x-component of VA2 can be found as follows:

The momentum in the x-direction before and after impact is shown by Equations 11 and 12.

Using Equations 11 and 12 with a 4,409-lb (2,000-kg) vehicle and substituting into Equation 5, the

impulse imparted to the vehicle during impact becomes:

Assuming a single, symmetrical saw-tooth forcing function, as shown in Figure 1(b), the impulse

is equal to the area under the triangle or ½(2)t)Flat. peak.  If the time from impact until the vehicle

becomes parallel to the bridge railing is 0.249 sec, as estimated previously, the peak lateral impact

force is estimated to be 29,651 lbs (131,892 N).  Thus, both procedures predict that the peak lateral

impact force should be approximately 30,000 lbs (133,447 N).  As a result, the barrier rail was

designed with sufficient capacity to withstand this estimated impact force.

4.1.2 Economy

Reinforced concrete was selected for use in the low-height, bridge railing based on ease of
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construction, material availability, and overall economy.  Since virtually all of the existing concrete

barrier systems incorporate economical top-mounted designs, this same type of construction was

utilized for this new bridge rail as well.  Cast-in-place concrete construction, used in conjunction

with a minimum quantity and size of longitudinal and vertical reinforcing bars, was believed to

provide a viable alternative for the roadway situation.  Costs for construction materials and labor

were estimated to be very low for this system because the barrier: (1) was configured with widely-

spaced vertical bars tied into the bridge deck; (2) utilized the smallest available bar size; and (3)

used an efficient layout for the reinforcing steel.

4.1.3 Minimum Barrier Height and Front-Face Geometry

The ability of a low-height, barrier rail to adequately contain and redirect an impacting

vehicle is greatly affected by its front-face geometry and top-mounting height.  If the barrier height

is too low and offers little vehicle containment, the vehicle may either vault or roll over the barrier

system.  If the barrier height is generally sufficient but its front face geometry provides increased

tire interaction below or near its mid-height, then the impacting vehicle’s tire may have greater

propensity to climb, mount, or traverse the barrier system.  These two factors were previously

considered at length during the development of two low-height, timber bridge railing systems for

use on timber deck bridges located low-volume roads (8-12).

For this study, a 508-mm barrier height was chosen for the new bridge rail based on prior

successful full-scale crash testing on low-height timber and concrete barriers.  For the barrier’s

front-face geometry, MwRSF researchers believed that improved performance would result if two

conditions were met.  First, if the barrier’s redirective force was applied to a point above the mid-

height of the impacted wheel assembly, then vehicle override would be minimized.  Second, if the
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barrier face extended further out toward the vehicle at the top than at the lower regions, then the

probability of the tire climbing the barrier’s face would be reduced.  As a result, a configuration was

chosen which incorporated a vertical wall for the lower 55% of parapet height and a protruding step

for the remaining upper parapet height.  Researchers believed that acceptable vehicle performance

would be obtained by having the upper protruding step blocked out 76 mm in front of the lower rail

region.

4.1.4 Barrier End Termination

For all types of longitudinal barriers, it is always necessary to make consideration for proper

end termination of the barrier system as it is a legitimate safety concern.  As noted previously, TTI’s

low-profile concrete barrier system was developed with a crashworthy, sloped end terminal.  For the

TTI barrier system, the concrete end was sloped downward from 508 mm to 102 mm at its upstream

end and over a length of 4,572 mm. In addition, the top barrier width decreased from 711 mm to 366

mm at the upstream end.

For the new low-height bridge railing system, end termination was also considered. MwRSF

researchers reasoned that the new barrier’s sloped geometry should replicate that of TTI’s barrier

system.  If the overall geometry was the same, then it was believed that the same level of safety

would be provided, and additional crash testing would not be required.

4.2 Design Details

The 22.86-m long test installation consisted of a reinforced concrete parapet, as shown in

Figures 2 through 4.  Photographs of the test installation are shown in Figures 5 through 6.

The entire system measured 508-mm high by 356-mm and 279-mm wide at the top and

bottom surfaces, respectively, as shown in Figures 2, 5, and 6.  The concrete used for the bridge rail
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consisted of a Nebraska 47-BD Mix Type 3, with a minimum compressive strength of 31.03 MPa.

A minimum concrete cover of 38 mm was used for all of the rebar placed within the concrete bridge

rail.  All of the steel reinforcement in the bridge rail was Grade 60 epoxy-coated rebar.

The steel reinforcement utilized No. 3 bars for the longitudinal, vertical dowel, vertical hoop,

and vertical U stirrup bars, as shown in Figures 3 and 4.  Each of the seven runs of longitudinal rebar

was 22.78-m long.  The length of the longitudinal bar can be varied as long as the minimum lap

length of 229 mm is maintained.  The vertical dowel bars were 673-mm long and spaced 610 mm

on center.  The vertical hoop bars were 956-mm long and spaced 610 mm on center, as shown in

Figure 3.  The vertical rectangular stirrups, formed with two overlapped 556-mm long U stirrup bars,

were spaced 305 mm on center, as shown in Figure 3.  The vertical dowel bars were attached to the

existing concrete apron using an epoxy resin, as shown in Figure 3.  For actual attachment to a

reinforced concrete deck, the vertical bars would be bent into a L-shape and tied to the appropriate

transverse deck bars in order to develop their structural capacity.
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Figure 2. Low-Profile Bridge Rail Details
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Figure 3. Low-Profile Bridge Rail Design Details
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Figure 6. Low-Profile Bridge Rail
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5 TEST CONDITIONS

5.1 Test Facility

The testing facility is located at the Lincoln Air-Park on the northwest (NW) side of the

Lincoln Municipal Airport and is approximately 8.0 km NW of the University of Nebraska-Lincoln.

5.2 Vehicle Tow and Guidance System

A reverse cable tow system with a 1:2 mechanical advantage was used to propel the test

vehicle.  The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle.

The test vehicle was released from the tow cable before impact with the bridge rail.  A digital

speedometer was located on the tow vehicle to increase the accuracy of the test vehicle impact

speed.

A vehicle guidance system developed by Hinch (13) was used to steer the test vehicle.  A

guide-flag, attached to the front-right wheel and the guide cable, was sheared off before impact with

the bridge rail.  The 9.5-mm diameter guide cable was tensioned to approximately 13.3 kN, and

supported laterally and vertically every 30.48 m by hinged stanchions.  The hinged stanchions stood

upright while holding up the guide cable, but as the vehicle was towed down the line, the guide-flag

struck and knocked each stanchion to the ground.  The vehicle guidance system was approximately

304.8-m long.

5.3 Test Vehicles

For test LPBR-1, a 1995 GMC 2500 SL ¾-ton pickup truck was used as the test vehicle.  The

test inertial and gross static weights were 2,018 kg.  The test vehicle is shown in Figure 7, and

vehicle dimensions are shown in Figure 8.

The longitudinal component of the center of gravity was determined using the measured axle
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Figure 7. Test Vehicle, Test LPBR-1
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Figure 8. Vehicle Dimensions, Test LPBR-1
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weights. The location of the final centers of gravity are shown in Figure 7.

Square, black and white-checkered targets were placed on the vehicle to aid in the analysis

of the high-speed film and E/cam video, as shown in Figure 9.  Round, checkered targets were

placed on the center of gravity on the driver’s side door, the passenger’s side door, and on the roof

of the vehicle.  The remaining targets were located for reference so that they could be viewed from

the high-speed cameras for film analysis.

The front wheels of the test vehicle were aligned for camber, caster, and toe-in values of zero

so that the vehicle would track properly along the guide cable.  Two 5B flash bulbs were mounted

on both the hood and roof of the vehicle to pinpoint the time of impact with the bridge rail on the

high-speed film and E/cam video.  The flash bulbs were fired by a pressure tape switch mounted on

the front face of the bumper.  A remote controlled brake system was installed in the test vehicle so

the vehicle could be brought safely to a stop after the test.

5.4 Data Acquisition Systems

5.4.1 Accelerometers

One triaxial piezoresistive accelerometer system with a range of ±200 G’s was used to

measure the acceleration in the longitudinal, lateral, and vertical directions at a sample rate of 10,000

Hz.  The environmental shock and vibration sensor/recorder system, Model EDR-4M6, was

developed by Instrumented Sensor Technology (IST) of Okemos, Michigan and includes three

differential channels as well as three single-ended channels.  The EDR-4 was configured with 6 Mb

of RAM memory and a 1,500 Hz lowpass filter.  Computer software, “DynaMax 1 (DM-1)” and

“DADiSP” were used to analyze and plot the accelerometer data.

A backup triaxial piezoresistive accelerometer system with a range of ±200 G’s was also
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Figure 9. Vehicle Target Locations, Test LPBR-1
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used to measure the acceleration in the longitudinal, lateral, and vertical directions at a sample rate

of 3,200 Hz.  The environmental shock and vibration sensor/recorder system, Model EDR-3, was

developed by Instrumental Sensor Technology (IST) of Okemos, Michigan.  The EDR-3 was

configured with 256 Kb of RAM memory and a 1,120 Hz lowpass filter.  Computer software,

“DynaMax 1 (DM-1)” and “DADiSP” were used to analyze and plot the accelerometer data.

5.4.2 Rate Transducers

A Humphrey 3-axis rate transducer with a range of 360 deg/sec in each of the three

directions (pitch, roll, and yaw) was used to measure the rates of motion of the test vehicle.  The rate

transducer was rigidly attached to the vehicle near the center of gravity of the test vehicle.  Rate

transducer signals, excited by a 28 volt DC power source, were received through the three single-

ended channels located externally on the EDR-4M6 and stored in the internal memory.  The raw data

measurements were then downloaded for analysis and plotted.  Computer software, “DynaMax 1

(DM-1)” and “DADiSP” were used to analyze and plot the rate transducer data.

5.4.3 High-Speed Photography

For test LPBR-1, two high-speed 16-mm Red Lake Locam cameras, with operating speeds

of approximately 500 frames/sec, were used to film the crash test.  Three high-speed Red Lake

E/cam video cameras, with operating speeds of 500 frames/sec, were also used to film the crash test.

Three Canon digital video cameras, with a standard operating speed of 29.97 frames/sec, were also

used to film the crash test.  A Locam, with a wide-angle 12.5-mm lens, a high-speed E/cam video

camera, and a Canon digital video camera were placed above the test installation to provide a field

of view perpendicular to the ground.  A high-speed E/cam video camera and a Canon digital video

camera were placed downstream from the impact point and had a field of view parallel to the barrier.
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A high-speed E/cam video camera and an SVHS video camera were placed upstream from the

impact point and had a field of view parallel to the barrier.  A Locam and a Canon digital video

camera were placed on the traffic side of the barrier and had a field of view perpendicular to the

barrier.  A schematic of all nine camera locations for test LPBR-1 is shown in Figure 10.  The

Locam film and E/cam video were analyzed using the Vanguard Motion Analyzer and the Redlake

Motion Scope software, respectively.  Actual camera speed and camera divergence factors were

considered in the analysis of the high-speed film.

5.4.4 Pressure Tape Switches

For test LPBR-1, five pressure-activated tape switches, spaced at 2-m intervals, were used

to determine the speed of the vehicle before impact. Each tape switch fired a strobe light which sent

an electronic timing signal to the data acquisition system as the left-front tire of the test vehicle

passed over it.  Test vehicle speed was determined from electronic timing mark data recorded using

the "Test Point" software.  Strobe lights and high-speed film analysis are used only as a backup in

the event that vehicle speed cannot be determined from the electronic data.
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6 CRASH TEST NO. 1

6.1 Test LPBR-1

The 2,018-kg pickup truck impacted the low-profile bridge rail at a speed of 70.0 km/hr and

at an angle of 27.1 degrees.  A summary of the test results and the sequential photographs are shown

in Figure 11.  Additional sequential photographs are shown in Figures 12 and 13.  Documentary

photographs of the crash test are shown in Figures 14 and 15.

6.2 Test Description

Initial impact occurred 5.79-m downstream from the upstream end of the system, as shown

in Figure 16.  At 0.036 sec after impact, the left-front corner of the vehicle was located 0.76-m

downstream from the impact point and protruding across the rail.  At 0.070 sec, the left-rear corner

of the vehicle’s cab contacted the rail.  At this same time, the gap at the top of the left-side door

began to widen.   At 0.100 sec, the left-front tire became airborne as the front of the vehicle pitched

upward.  At 0.106 sec, the right-front tire became airborne.  At 0.108 sec, half of the left-side door

was in contact with the rail.  At 0.114 sec, the truck began to redirect.  At 0.120 sec, the left-front

corner of the vehicle reached its maximum intrusion of 457 mm over the rail.  At 0.132 sec, the left-

rear tire became airborne.  At 0.150 sec, the front of the vehicle was 3.05-m downstream from the

impact point.  At 0.164 sec, the left side of the vehicle’s cab was in contact with the rail.  At 0.174

sec, the right-rear tire became airborne as the front bumper continued to slide along the top of the

rail.  At 0.211 sec, the vehicle began to roll counter-clockwise (CCW) toward the rail.  At 0.247 sec,

the left-front corner of the truck box contacted the wall.  At 0.293 sec, one half of the left side of the

truck box was in contact with the wall.  At 0.352 sec, the front end of the truck reached its maximum

height above the ground.  At 0.359 sec, the front of the vehicle was 6.10-m downstream from the



36

impact point.  The vehicle became parallel to the bridge rail at 0.378 sec after impact with a resultant

velocity of 49.9 km/hr.  At 0.406 sec, the vehicle was completely airborne.  At 0.417 sec, the left

side of the truck box began to slide along the top of the rail.  At 0.479 sec, the right-side tires were

airborne.  At 0.500 sec, the left side of the truck box continued to slide along the top of the bridge

rail as the vehicle continued to roll CCW toward the rail.  At 0.584 sec, the front of the vehicle was

9.14-m downstream from the impact point.  At 0.559 sec, the truck box reached its maximum

intrusion of 442 mm over the rail.  At 0.600 sec, the vehicle’s rear end reached its maximum height

above the ground as the front end of the vehicle pitched downward into the ground.  At 0.612 sec,

the vehicle reached its maximum roll angle of 36 degrees toward the rail.  At this same time, the left

side of the vehicle’s box and cab remained in contact with the bridge rail.  At 0.650 sec, the left-

front corner of the vehicle contacted the ground.  Shortly after this time, the vehicle began to roll

clockwise (CW).  At 0.756 sec, the rear of the vehicle remained in contact with the rail at 6.10-m

downstream from the impact point.  At 0.794 sec, the vehicle exited the bridge rail at an estimated

trajectory angle of 5 to 7 degrees and at a resultant velocity of 46.1 km/hr.  At 0.905 sec, the rear

of the vehicle was 7.62-m downstream from the impact point and no longer in contact with the

system.  At 1.003 sec, the right-rear tire remained airborne.  At 1.118 sec, the right-front tire

contacted the ground.  At 1.306 sec, the rear of the vehicle contacted the ground.  The vehicle came

to rest 39.62-m downstream from impact and 2.43-m laterally away from the traffic-side face of the

rail, as shown in Figures 11 and 17.

6.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 17 through 19.  Cracking of the

bridge rail did not occur.  Barrier damage consisted mostly of contact marks on the concrete face
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and minor spalling of the concrete.  The length of vehicle contact along the concrete bridge rail was

approximately 2.74 m.  Minor spalling and black contact marks were found on the front face of the

bridge rail.  The lower front face of the bridge rail encountered 457 mm of contact marks originating

at the impact point.  Black contact marks and minor scrape mark were found on the concrete deck

7.62-m downstream from impact and 0.91-m laterally away from the traffic-side face of the rail.

6.4 Vehicle Damage

Exterior vehicle damage was moderate, as shown in Figures 20 through 22.  The left-front

side  of the bumper was twisted in toward the engine compartment.  The left-front fender was dented

and deformed.  Scrape marks and slight deformations were found on the lower portion of the box

and the rear bumper.  The box was also slightly twisted thereby increasing the gap between the cab

and the box.  Small scrape marks were found on the left-rear steel rim.  Two 152-mm long scrape

marks from the concrete rail were found on the left-rear wheel side wall.  The left-front tire was

almost pulled completely off of the steel rim.  The left-front wheel disengaged from the upper A-

frame control arm.  The lower A-frame control arm was bent downward.  The left-front tie rod

disengaged.  The sway bar was stretched but remained attached to the lower control arm.  The left-

front frame member encountered major deformations.  The left side of the interior floorboard was

deformed near the left toe pan and under the brake pedal, as shown in Figure 22.  The roof, the hood,

the right-side and left-side doors, and all the window glass remained undamaged.

6.5 Occupant Risk Values

The longitudinal and lateral occupant impact velocities were determined to be 6.61 m/sec

and 4.78 m/sec, respectively.  The maximum 0.010-sec average occupant ridedown decelerations

in the longitudinal and lateral directions were 7.87 g’s and 8.10 g’s, respectively.  It is noted that the
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occupant impact velocities (OIV’s) and occupant ridedown decelerations (ORD’s) were within the

suggested limits provided in NCHRP Report No. 350.  The results of the occupant risk, determined

from the accelerometer data, are summarized in Figure 11.  Results are shown graphically in

Appendix A. The results from the rate transducer are shown graphically in Appendix B.

6.6 Discussion

The analysis of the test results for test LPBR-1 showed that the low-profile bridge rail system

adequately contained and redirected the vehicle with controlled lateral displacements of the bridge

rail.  There were no detached elements or fragments which showed potential for penetrating the

occupant compartment or presented undue hazard to other traffic.  Deformations of, or intrusion into,

the occupant compartment that could have caused serious injury did not occur.  The test vehicle did

not penetrate or ride over the bridge rail and remained upright during and after the collision.  Vehicle

roll, pitch, and yaw angular displacements were noted, but they were deemed acceptable because

they did not adversely influence occupant risk safety criteria nor cause rollover.  After collision, the

vehicle’s trajectory revealed minimum intrusion into adjacent traffic lanes.  In addition, the vehicle’s

exit angle was less than 60 percent of the impact angle.  Therefore, test LPBR-1 conducted on the

bridge railing was determined to be acceptable according to the NCHRP Report No. 350 safety

performance criteria.
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0.000 sec

0.106 sec

0.384 sec

0.650 sec

1.118 sec

0.000 sec

0.070 sec

0.154 sec

0.338 sec

0.640 sec

Figure 12. Additional Sequential Photographs, Test LPBR-1
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0.000 sec

0.172 sec

0.414 sec

0.724 sec

1.310 sec

Figure 13. Additional Sequential Photographs, Test LPBR-1
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Figure 14. Documentary Photographs, Test LPBR-1



43

Figure 15. Documentary Photographs, Test LPBR-1
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Figure 16. Impact Location, Test LPBR-1
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Figure 17. Overall Damage and Final Positions, Test LPBR-1
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Figure 18. Low-Profile Bridge Rail Damage, Test LPBR-1



47

Fi
gu

re
 1

9.
 L

ow
-P

ro
fil

e 
B

rid
ge

 R
ai

l D
am

ag
e,

 T
es

t L
PB

R
-1



48

Fi
gu

re
 2

0.
 V

eh
ic

le
 D

am
ag

e,
 T

es
t L

PB
R

-1



49

Figure 21. Vehicle Damage, Test LPBR-1
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Figure 22. Occupant Compartment Deformations, Test LPBR-1
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7 SUMMARY AND CONCLUSIONS

A low-profile bridge railing was constructed and full-scale vehicle crash tested.  The bridge

rail was configured as a minimally-reinforced, low-height concrete parapet.  A full-scale vehicle

crash test was performed with a ¾-ton pickup truck on the bridge rail system and was determined

to be acceptable according to the TL-2 safety performance criteria presented in NCHRP Report No.

350.  A summary of the safety performance evaluation is provided in Table 4.
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Table 4. Summary of Safety Performance Evaluation Results

Evaluation
Factors Evaluation Criteria Test

LPBR-1

Structural
Adequacy

A. Test article should contain and redirect the vehicle; the
vehicle should not penetrate, underride, or override the
installation although controlled lateral deflection of the
test article is acceptable.

S

Occupant
Risk

D. Detached elements, fragments or other debris from the
test article should not penetrate or show potential for
penetrating the occupant compartment, or present an
undue hazard to other traffic, pedestrians, or personnel
in a work zone. Deformations of, or intrusions into, the
occupant compartment that could cause serious injuries
should not be permitted.

S

F. The vehicle should remain upright during and after
collision although moderate roll, pitching, and yawing
are acceptable.

S

Vehicle
Trajectory

K. After collision it is preferable that the vehicle's
trajectory not intrude into adjacent traffic lanes. S

L. The occupant impact velocity in the longitudinal
direction should not exceed 12 m/sec, and the occupant
ridedown acceleration in the longitudinal direction
should not exceed 20 G’s.

S

M. The exit angle from the test article preferably should be
less than 60 percent of test impact angle measured at
time of vehicle loss of contact with test device.

S

S - Satisfactory
M - Marginal
U - Unsatisfactory
NA - Not Available
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8 RECOMMENDATIONS

A low-profile bridge railing system designed for use in urban areas, as described in this

report, was successfully crash tested according to the criteria found in NCHRP Report No. 350.  The

results of this test indicate that this design is a suitable design for use on Federal-aid highways where

pedestrians and/or site restrictions prevent the use of conventional bridge rails with transitions.

However, any design modifications made to the low-profile bridge railing system can only be

verified through the use of full-scale crash testing.

Furthermore, a low-profile end treatment system for use with the low-profile bridge railing

system has also been designed.  This design, as shown in Figures 23 through 27, is based on the

successful full-scale vehicle crash testing on a NCHRP Report No. 350 TL-2 low-profile end

treatment previously developed by TTI.  Based on similarities between TTI’s crash-tested TL-2 end

treatment and the proposed end treatment system, the researches believe that the proposed end

treatment would meet the TL-2 criteria of NCHRP Report No. 350.



54

Fi
gu

re
 2

3.
 L

ow
-P

ro
fil

e 
B

rid
ge

 R
ai

l E
nd

 T
re

at
m

en
t D

es
ig

n 
D

et
ai

ls



55

Fi
gu

re
 2

4.
 L

ow
-P

ro
fil

e 
B

rid
ge

 R
ai

l E
nd

 T
re

at
m

en
t D

es
ig

n 
D

et
ai

ls



56

Fi
gu

re
 2

5.
 L

ow
-P

ro
fil

e 
B

rid
ge

 R
ai

l E
nd

 T
re

at
m

en
t D

es
ig

n 
D

et
ai

ls



57

Fi
gu

re
 2

6.
 L

ow
-P

ro
fil

e 
B

rid
ge

 R
ai

l E
nd

 T
re

at
m

en
t R

ei
nf

or
ce

m
en

t D
et

ai
ls



58

Fi
gu

re
 2

7.
 L

ow
-P

ro
fil

e 
B

rid
ge

 R
ai

l E
nd

 T
re

at
m

en
t R

ei
nf

or
ce

m
en

t D
et

ai
ls



59

9 REFERENCES

1. Ross, H.E., Sicking, D.L., Zimmer, R.A. and Michie, J.D., Recommended Procedures for
the Safety Performance Evaluation of Highway Features, National Cooperative Highway
Research Program (NCHRP) Report No. 350, Transportation Research Board, Washington,
D.C., 1993.

2. Guidry, T.R. and Beason, W.L, Development of a Low-Profile Portable Concrete Barrier,
Research Report No. 990-4F, Texas Transportation Institute, Texas A&M University,
College Station, Texas, November 1991.

3. Beason, W.L., Menges, W.L., and Ivey, D.L., Compliance Testing of an End Treatment for
the Low-Profile Concrete Barrier, Research Report No. 1403-S, Texas Transportation
Institute, Texas A&M University, College Station, Texas, April 1998.

4. Consolazio, G.R., Chung, J.H., and Gurley, K.R., Development of a Low Profile Work Zone
Barrier Using Impact Finite Element Simulation, Paper submitted for review for the 2002
Annual Meeting of the Transportation Research Board, Washington, D.C., August 3, 2001.

5. Michie, J.D., Recommended Procedures for the Safety Performance Evaluation of Highway
Appurtenances, National Cooperative Highway Research Program (NCHRP) Report No.
230, Transportation Research Board, Washington, D.C., March 1981.

6. Tentative Service Requirements For Bridge Rail Systems, National Cooperative Highway
Research Program (NCHRP) Report No. 86, Highway Research Board, National Research
Council, Washington, D.C., 1970.

7. Guide for Selecting, Locating, and Designing Traffic Barriers, American Association of
State Highway and Transportation Officials, Washington, D.C., 1977.

8. Faller, R.K., Rosson, B.T., Ritter, M.A., and Duwadi, S.R., Railing Systems for Use on
Timber Deck Bridges, Transportation Research Record No. 1656, Transportation Research
Board, Washington, D.C., July 1999, 110-119.

9. Faller, R.K., Rosson, B.T., Ritter, M.A., Sicking, D.L., and Bunnell, S., Design and
Evaluation of Two Low-Volume Bridge Railings, Sixth International Conference on Low-
Volume Roads, Volume 2, Conference Proceedings 6, University of Minnesota,
Minneapolis, Minnesota, June 25-29, 1995, Transportation Research Board, Washington,
D.C.

10. Ritter, M.A., Faller, R.K., Bunnell, S., Lee, P.D.H., and Rosson, B.T., Plans for Crash-
Tested Bridge Railings for Longitudinal Wood Decks on Low-Volume Roads, General
Technical Report No. FPL-GTR-107, United States Department of Agriculture - Forest
Service - Forest Products Laboratory and Federal Highway Administration, August 1998.



60

11. Faller, R.K., Soyland, K., Rosson, B.T., and Stutzman, T.M., TL-1 Curb-Type Bridge Railing
for Longitudinal Glulam Timber Decks Located on Low-Volume Roads, Draft Report to the
United Sates Department of Agriculture-Forest Service-Forest Products Laboratory,
Transportation Report No. TRP-03-54-96, Midwest Roadside Safety Facility, University of
Nebraska-Lincoln, Lincoln, Nebraska, April 1996.

12. Ritter, M.A., Faller, R.K., Sicking, D.L., and Bunnell, S., Development of Low-Volume
Curb-Type Bridge Railings for Timber Bridge Decks, Draft Report to the United Sates
Department of Agriculture-Forest Service-Forest Products Laboratory, Transportation
Report No. TRP-03-31-93, Midwest Roadside Safety Facility, University of Nebraska-
Lincoln, Lincoln, Nebraska, December 1993.

13. Hinch, J., Yang, T-L, and Owings, R., Guidance Systems for Vehicle Testing, ENSCO, Inc.,
Springfield, VA 1986.

14. Vehicle Damage Scale for Traffic Investigators, Second Edition, Technical Bulletin No.  1,
Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.

15. Collision Deformation Classification - Recommended Practice J224 March 1980, Handbook
Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.



61

10 APPENDICES



62

APPENDIX A

Accelerometer Data Analysis, Test LPBR-1

Figure A-1. Graph of Longitudinal Deceleration, Test LPBR-1

Figure A-2. Graph of Longitudinal Occupant Impact Velocity, Test LPBR-1

Figure A-3. Graph of Longitudinal Occupant Displacement, Test LPBR-1

Figure A-4. Graph of Lateral Deceleration, Test LPBR-1

Figure A-5. Graph of Lateral Occupant Impact Velocity, Test LPBR-1

Figure A-6. Graph of Lateral Occupant Displacement, Test LPBR-1
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APPENDIX B

Rate Transducer Data Analysis, Test LPBR-1

Figure B-1. Graph of Roll, Pitch, and Yaw Angular Displacements, Test LPBR-1
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