

Federal Highway Administration May 11, 2000

400 Seventh St, S.W Washington, D C 20590

Refer to: HSA-CC66

Mr. Edwin M. Wood Vice President Barrier Systems, Inc. 1100 E. William Street, Suite 206 Carson City, NV 89701

Ed Dear Mr. Wood:

In your March 6 letter to Mr. Dwight A. Home, you requested the Federal Highway Administration's (FHWA) acceptance for use on the National Highway System (NHS) of three different designs of your ABSORB 350 crash cushion as a National Cooperative Highway Research Program (NCHRP) Report 350 device for use at either test level 2 (TL-2) or test level 3 (TL-3). After reviewing the test reports and video coverage included with your letter, my staff recommended that some additional tests be run based on the design of the TI-3 ABSORB 350 and on its intended applications. On April 25, Mr. Owen Denman met with members of my staff and presented the results of the additional tests that you conducted.

The ABSORB 350 is a non-redirective, gating crash cushion primarily intended to shield the approach ends of temporary concrete banier in general and Quick Change Median Barrier (QMB) segments in particular. As noted below, the ABSORB 350 may also be used to shield permanent concrete barrier at appropriate locations. The ABSORB 350 system consists of a nosepiece assembly, followed by four, eight, or nine element assemblies, and a transition/attachment assembly. These assemblies can be seen in Enclosure 1. We note that there are two types of element assemblies and that these must be alternated when installed. Both types are made from low density polyethylene and have internal structural components and connection hardware fashioned from ASTM A-36 mild steel. These elements are 800-mm tall and 610-mm wide. When empty, the element assemblies weigh 48 kg each. When filled with approximately 300 liters of water, they weigh 315 kg. The first element in an array must be kept empty to ensure proper performance. All other elements must be filled with water. The eight-element and nine-element TL-3 designs are 8.2 meters long and 9.2 meters long, respectively; the proposed four-element TL-2 design is 4.4 meters long.

Test results were contained in two reports, both prepared by Safe Technologies, Inc., in Rio Vista, California. They are entitled "NCHRP Report 350 Crash Test Results For ABSORB 350 Non-Redirective Crash Cushion (February 2000)" and a separate "ADDENDUM" to that report dated April 2000. A total of five tests were reported on an eight-element array connected to QMB segments. These were NCHRP Report 350 tests 3-40 (AET02), 3-41 (AET01), 3-43

(AET03), 3-44 (AET04), and a "modified" test 3-44 (AET11) with the actual impact point closer to the rear of the installation to demonstrate the effect of a rear corner impact. We concur with your statement that for the particular design of this device, NCHRP Report 350 test 3-42 may be waived. Summary sheets for the five tests are included as Enclosure 2. You requested a TL-3 acceptance of this design.

You also conducted two tests of a nine-element array. In the first of these tests (NCHRP Report 350 3-41/Aet06), the ABSORB 350 was attached to a free-standing temporary concrete barrier consisting of several 6-m long New Jersey shape segments. In the second test (NCHRP Report 350 3-44 "modified"/AET07), it was attached to a "fixed" concrete barrier to replicate a permanent installation. Based on the results of these tests, summarized as Enclosure 3, you requested TL-3 acceptance of a nine-element array when used to shield the ends of both temporary (minimum 6-m long segments) and permanent concrete barrier installations.

Finally, you conducted NCHRP Report 350 test 2-41 (AET05) into a four-element array at a nominal impact speed of 70 km/h and requested acceptance of this unit at TL-2 based on that one test. Enclosure 4 is a summary sheet of that test.

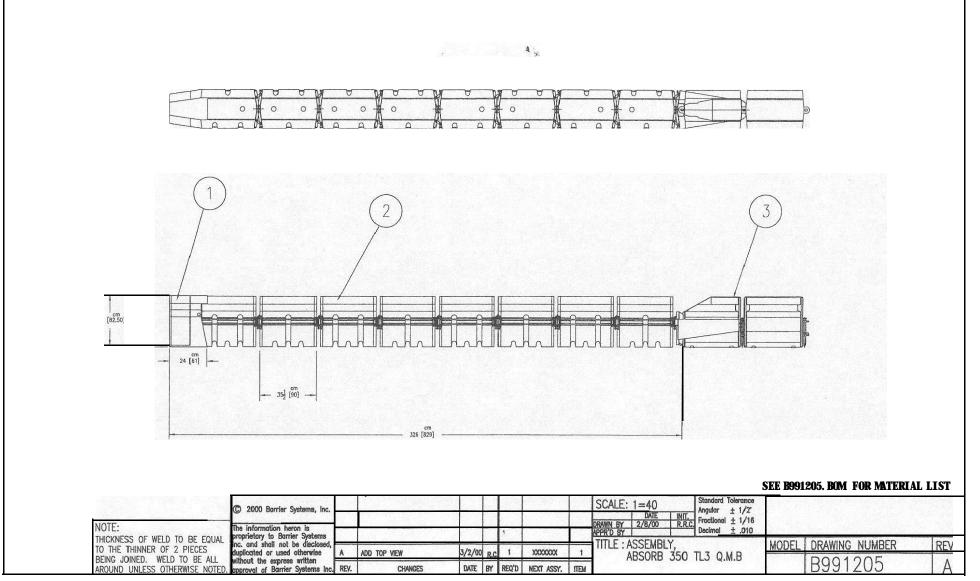
After reviewing the information you provided, my staff has concluded that the following designs may be considered acceptable for use on the NHS at TL-3 when such use is requested by the appropriate transportation agency:

- the eight-element design when connected to QMB units when the leading top edge of the first QMB unit is tapered as was done in the test
 - the nine-element design when connected to permanent concrete barrier or to temporary concrete safety shaped barrier with individual segments having a minimum length of 6.1 m

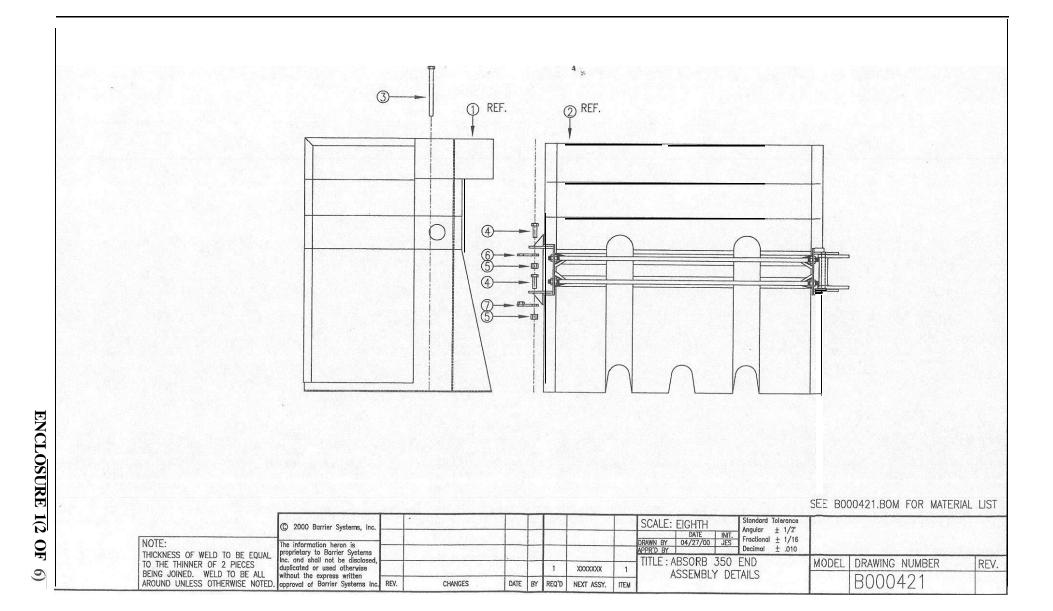
In reviewing the single test you conducted on the four-element TL-2 design and comparing this to tests run on other crash cushions at the TL-2 impact speed of 70 km/h, we do not have adequate data to conclude that the shortened ABSORB 350 fully meets NCHRP Report 350 evaluation criteria at TL-2. Previous testing of other TL-2 crash cushions has indicated that NCBRP Report 350 test 2-40 may be critical from an occupant injury and vehicle stability standpoint and that test 2-44 may be critical in regard to vehicle stability. Test results may also differ depending on the type of barrier to which the four-element ABSORB 350 is connected, i.e., QMB, permanent concrete barrier, or non-anchored temporary concrete barrier. Should you wish to pursue acceptance of the ABSORB 350 at TL-2, please confer with Mr. Richard Powers at (202) 366.1320 to determine which test conditions will be appropriate.

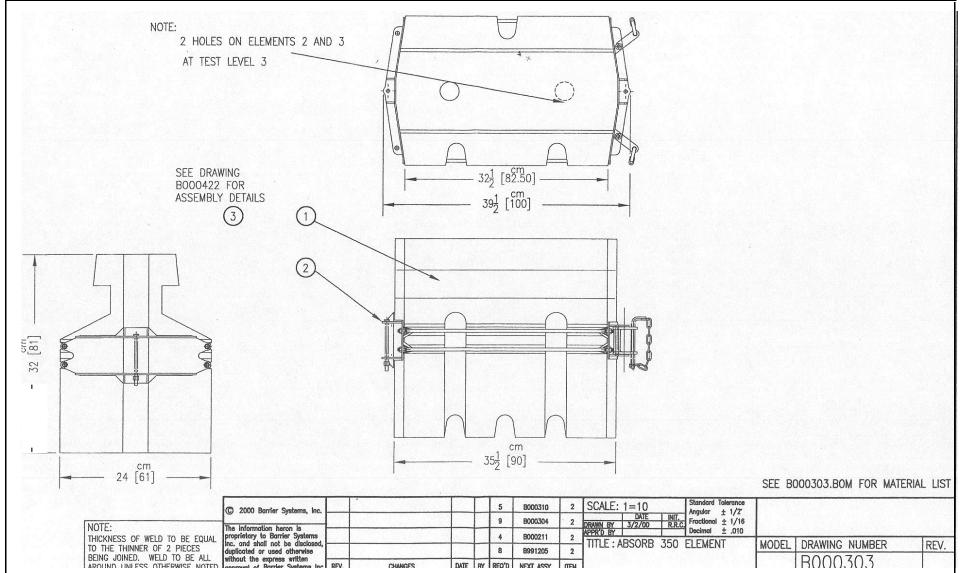
Because the ABSORB 350 is a non-redirecting, gating cash cushion, care must be used in its application. As seen in your tests, vehicle penetration is likely to occur for angle hits from the

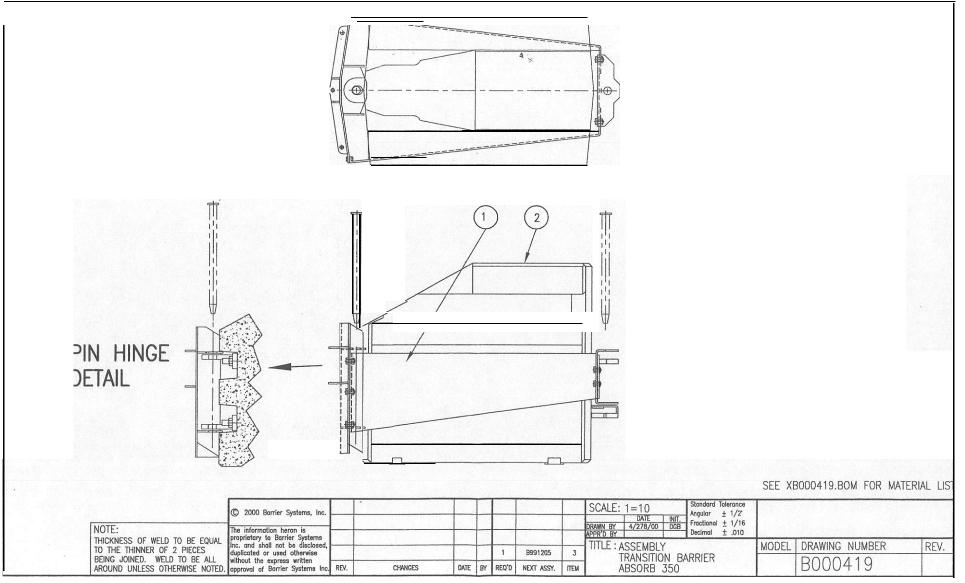
nose to near the mid-point of the array and penetration/override of the system is possible for high speed, high angle impacts near the rear of the device. Your test report states that systems like the ABSORB 350 (i.e., all gating, non-redirective crash cushions) "should be applied to hazards that are not likely to be impacted at an angle on the side at any significant velocity." We note also that proper antifreezing agents must be used as filler when the ABSORB 350 is used in areas where low temperatures can be anticipated. Other important usage considerations are noted in Appendix E (Test Article Deployment Instructions) of Safe Technologies' crash test report. All users of this device should be made aware of the factors that contribute to its proper performance.


Since the ABSORB 350 is a proprietary crash cushion, its use on Federal-aid projects, except exempt, non-NHS projects, is subject to the conditions listed in Title 23, Code of Federal Regulations, Section 635.411. A copy of this regulation is enclosed for your ready reference.

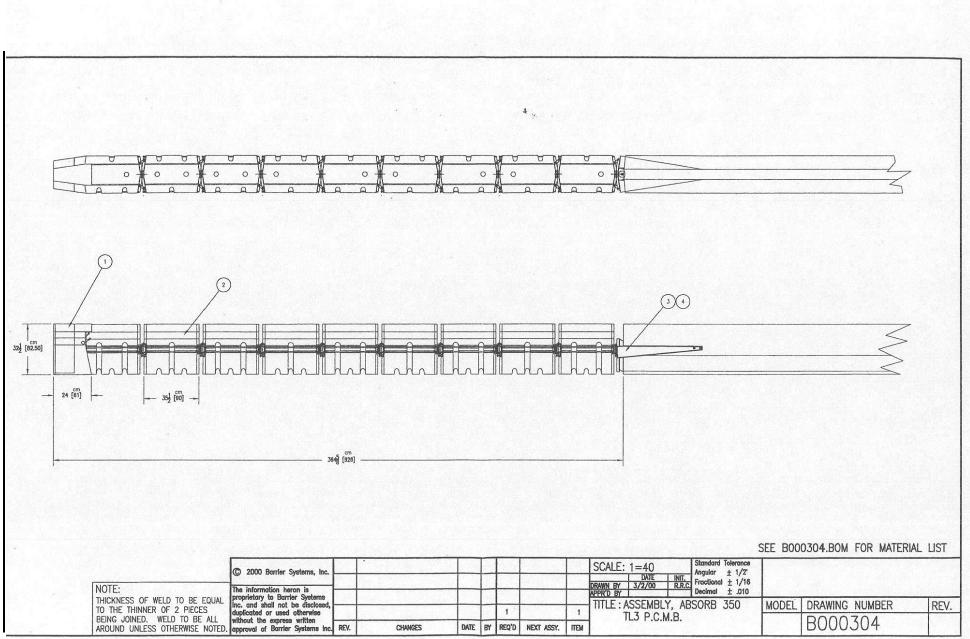
Sincerely yours,

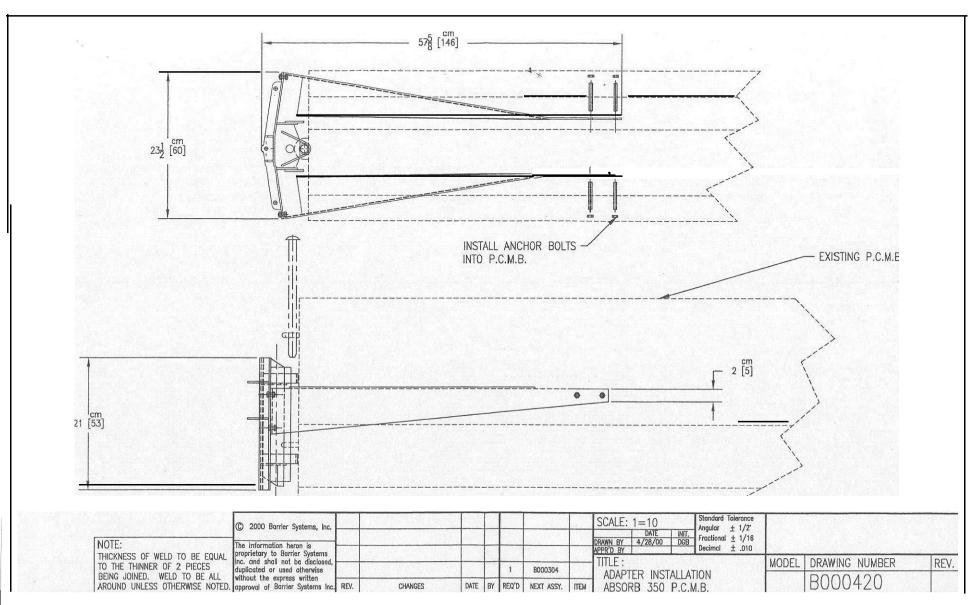

Frederick G. Wright, Jr.

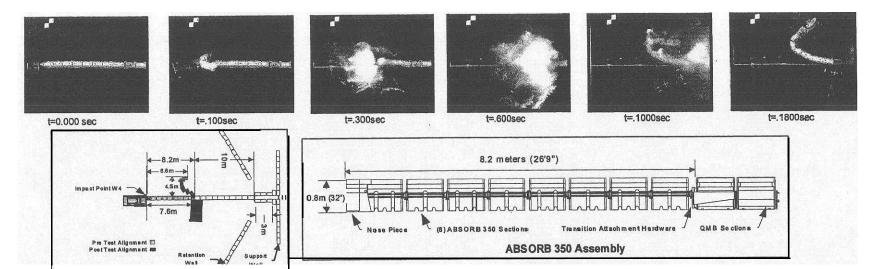

Program Manager, Safety


5 Enclosures

ENCLOSURE 1 (1 OF 6)





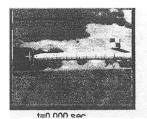


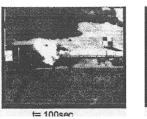
ENCLOSURE 1(4 OF

9

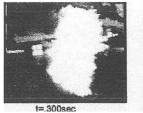
Conorol	Information
General	IIIIOIIIIauoi

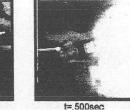
Test Agency	SAFE TECHNOLOGIES INC.
Test Designation	NCHRP 350 3-40
TestNo	ABSORB 350/Test #AET02
Date	2/4/00
Test Article	2, ,,,,,
Туре	Barrier Systems, Inc. ABSORB 350 Non-Rectedue Crash Cushion
Installation Length	8.2m overall (8 ABSORB sections w/ nose)
Size and/or dimension and material	
of key elements	Section length 1000mm, height 813mm,
	width 610mm, mass 48kg empty/315kg Full
Test Vehicle	
Туре	Production Model
Designation	820C
Model	1991, Ford Festiva
Mana (ka)	
Mass (kg) Curb	807
	834
D"mnly(s)	
Gross Static	909
Impact Conditions	00.0
speed (km/h)	89.3
Angle(deg)	0atW4

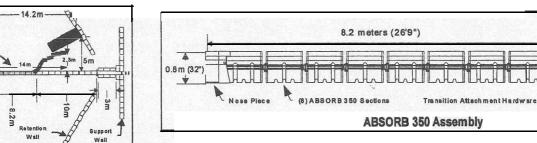

impact Severily (kJ) 317


Exit Conditions Speed (km/h)	N/A
Angle (deg),,.,,.,,.,	NIA
Occupant risk Values	
Impact Velocity (m/s)	
x-direction .	10.2
y-direction ,,,,,	4.3
Ridedown Accleration (g's)	
x-direction	-11
y-direction _,,.,,	-3.2
THIV (m/s)	9.7
PHD (g's),	. 11.3
AS I	1.19

Veh	icle	Dam	age
-----	------	-----	-----


Exterior				
VOS ",			FL?	
CDC .,,,,,	,,.,.,,,,,,.,.,.,.,,.,,,,,,,,,,,,,,,,,,	, . , , , , , , , , , , ,	12FLEN2	
Interior				
OCDI	,		A\$000000	
Post-Impact Vehicula	behavior (deg	-gyro @ c.g)		
Maximum Roll	Angle ,,,,,,	,,.	-413 (observed	<10)
Maximum Pito	h Angle .		. 49.2 (observed	<10)
Maximum Yav	/ Angle	,,	.,198 (observed	260)


Figure 6. Summary of Results Test #AET02



t=.800seo

QMB Sections

3/4 Ton Pickup

General Information

(8) ABSORB 350 Water Filled Barrier

Pre Test Alignm ent 📼

Post Test Alig nm ent 📾

1.1

Solition monnation	
Test Agency	
TeSDesignation	NCHRP3503-41
Test No	ABSORB 350 / Test #AET01
Date	2/15/00
Test Article	
Туре	Barrier Systems, Inc.
	ABSORB 350 Non-Redirective Crash Cushion
Installation Length	 8.2m overall (8 ABSORB sections w / nose)
Size and/or dimension and material	
of key elements	Section length 1000mm, height 813mm,
P106.1.0	width 610mm, mass 48kg empty / 315kg Full
Test Vehicle	
Туре	Production Model
Designation	. 2000P
Model	1989, Chevrolet Silverado 2500

Mass (kg)	
Curb	1901
Test Inertial	1976
Dummy(s)	n/a
Gross Static	1976
Impact Conditions	
Speed (km/h)	99.2
Angle (deg)	0
Impact Severity (kJ)	750

Exit Conditions

Speed (km/h).	7.5
Angle (deg)	27
Occupant risk Values	
Impact Velocity (m/s)	
x-direction	
y-direction	0.3
Ridedown Acceleration (g's)	
x-direction	-11.9
y-direction.	-4.8
THIV (m/s)	9.7
PHD (g's)	13.6
ASI	0.99

Vehicle Damage

1

Exterior	
VDS	FC-4
CDC	12FDEW2
Interior	
OCDI	AS000000
Post-Impact Vehicular behavior (deg - gyro @ c.g.)	
Maximum Roll Angle	8.6 (observed <10)
Maximum Pitch Angle	-27.4 (observed < 10)
Maximum Yaw Angle	-31.2 (observed 30)

Figure 1. Summary of Results Test #AET01

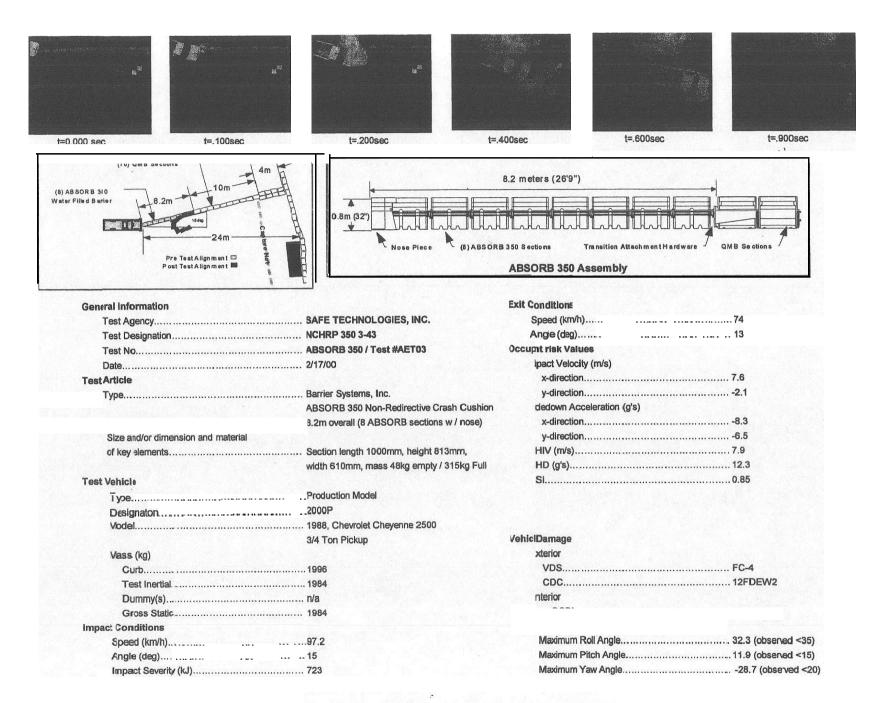
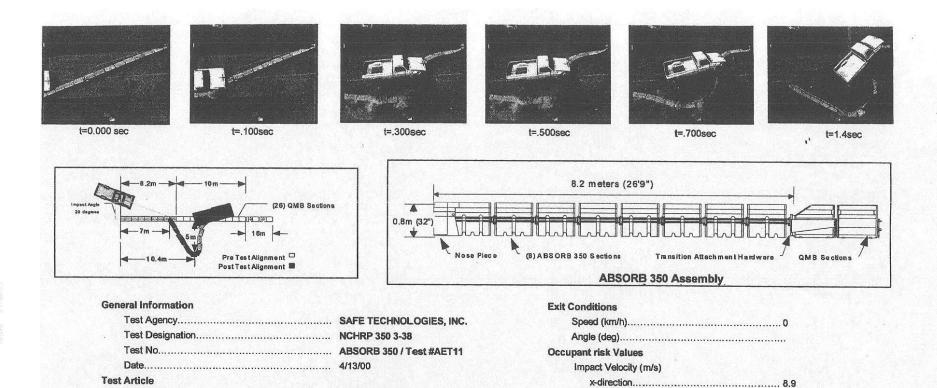



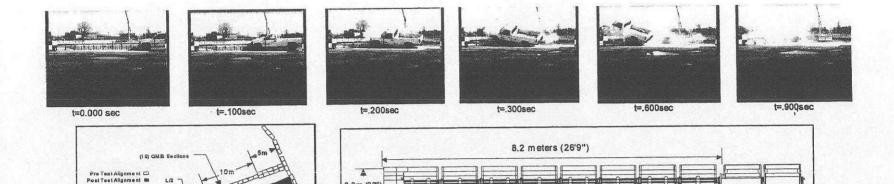
Figure 11. Summary of Results Test #AET03

Barrier Systems, Inc.

ABSORB 350 Non-Redirective Crash Cushion

Туре.....

Impact Severity (kJ)..... 720


Installation Length	8.2 m overall (8 ABSORB sections w / nose)	x-direction	
Size and/or dimension and material		y-direction8.8	
of key elements	Section length 1000mm, height 813mm,	THIV (m/s)	
	width 610mm, mass 48kg empty / 315kg Full	PHD (g's)27.8	
Test Vehicle		ASI	
Туре	Production Model		
Designation	2000P		
Model	1978, Chevrolet 3/4 Ton Pickup		
		Vehicle Damage	
Mass (kg)		Exterior	
Curb	2093	VDS FC-5	
Test Inertial		CDC	EW2
Dummy(s)	n/a	Interior	
Gross Static	1975	OCDI AS00	000000
Impact Conditions		Post-Impact Vehicular behavior (deg - gyro @ c.g.)	
Speed (km/h)	97.2	Maximum Roll Angle	
Angle (deg)	20	Maximum Pitch Angle9.3	

y-direction......0.4

Maximum Yaw Angle.....-43.9

Ridedown Acceleration (g's)

Figure 6. Summary of Results Test #AET11

Nose Piece

0.8m (32") *

23.5m	
General Information	
Test Agency	SAFE TECHNOLOGIES, INC.
	NCHRP 350 3-44
Test No	ABSORB 350 / Test #AET04
Date	2/23/00
Test Article	
Туре	Barrier Systems, Inc.
	ABSORB 350 Non-Redirective Crash Cushion
Installation Length	8.2m overall (8 ABSORB sections w / nose)
Size and/or dimension and material	
of key elements	Section length 1000mm, height 813mm,
	width 610mm, mass 48kg empty / 315kg Full
Test Vehicle	
Туре	Production Model
Designation	2000P
Model	1988, Chevrolet Cheyenne 2500
	3/4 Ton Pickup
Mass (kg)	
Curb	1923
Test Inertial	1930

Dummy(s)..... n/a Gross Static...... 1930

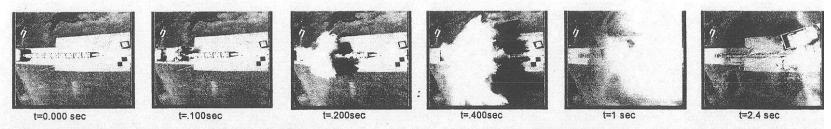
Angle (deg)..... 20 Impact Severity (kJ)..... 720

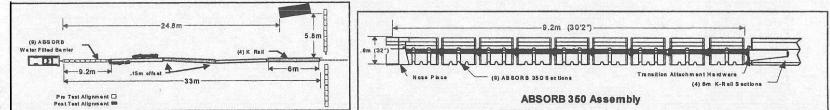
10

(8) AB SORB 350 Water Filled Bards

Impact Conditions

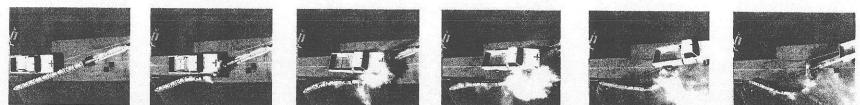
(6) ABSORB 350 Sections Transition Attachment Hardware **ABSORB 350 Assembly**


Exit Conditions	
Speed (km/h)	.39
Angle (deg)	15
Occupant risk Values	
Impact Velocity (m/s)	
x-direction	8.1
y-direction	0.8
Ridedown Acceleration (g's)	
x-direction	-14.6
y-direction	-13.6
THIV (m/s)	. 8.1
PHD (g's)	. 19
ASI	. 1.21


QMB Sections

/ehicle Damage	
Exterior	
VDS	FD-3
CDC	12FDEW3
Interior	
OCDI	RF0110000
ost-Impact Vehicular behavior (deg - gyro @	c.g.)
Maximum Roll Angle	51.6
Maximum Pitch Angle	23.3
Maximum Yaw Angle	25

Figure 16. Summary of Results Test #AET04

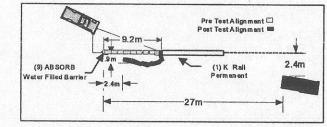

M

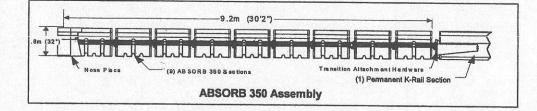
General Information		Exit Conditions	
Test Agency	SAFE TECHNOLOGIES, INC.	Speed (km/h)	. 7.9
Test Designation	NCHRP 350 3-41	Angle (deg)	20
Test No	ABSORB 350 / Test #AET06	occupant risk Values	
Date	3/1/00	Impact Velocity (m/s)	
Test Article		x-direction	10.1
Туре	Barrier Systems, Inc.	y-direction	-0.3
	ABSORB 350 Non-Redirective Crash Cushio	n Ridedow n Acceleration (g's)	
Installation Length	9.2m overall (9 ABSORB sections w / nose)	x-direction	-14.3
Size and/or dimension and material		y-direction	5.4
of key elements	section length 1000mm, height 813mm,	THV (m/s)	10.1
	width 61 0mm, mass 48kg empty / 315kg Full	PHD (g's)	14.4
Test Vehicle		ASI	0.95
Туре	Production Model		
Designation	2000P		
Model	1989, GMC Sierra 3/4 Ton pickup		
		Vehicle Damage	
Mass (kg)		Exterior	
Curb	1932	"OS	FC-3
Test inertial	1985	CDC	12FDEW1
Dummy (s)	n/a	Interior	
Gross static	1985	OCDI	AS000000
Impact Conditions		Post-Impact Vehicular behavior (deg. gyro	@ c.g.)
Speed (km/h)	97	Maximum Roll Angle	12.8 (observed <10)
Angle (deg)	0	Maximum Pitch Angle	-12.9 (observed <5)
Impact severity (kJ)	720	Maximum Yaw Angle	-15.7 (observed 20)

Figure 26. Summary of Results Test #AET06

t=0.000 sec

t=.100sec


t=.200sec


sec

t=.300sec

t=.500 sec

t=.800 sec

General Information

Conordi Information	
Test Agency	SAFE TECHNOLOGIES, INC.
Test Designation	NCHRP 350 3-38
Test No	ABSORB 350 / Test #AET07
Date	3/29/00
Test Article	
Туре	Barrier Systems, Inc.
	ABSORB 350 Non-Redirective Crash Cushion
Installation Length	9.2m overall (9 ABSORB sections w / nose)
Size and/or dimension and material	
of key elements	Section length 1000mm, height 813mm,
	width 610mm, mass 48kg empty / 315kg Full
Test Vehicle	
Туре	Production Model
Designation	2000P
Model	1983, GMC 3/4 Ton Pickup
Mass (kg)	
Curb	1935
Test Inertial	
Dummy(s)	n/a
Gross Static	
Impact Conditions	
Speed (km/h)	95.5
Angle (deg)	
Impact Severity (kJ)	694

Exit Conditions	
Speed (km/h)	
Angle (deg)	20
Occupant risk Values	
Impact Velocity (m/s)	
x-direction	8
y-direction	0.6
Ridedown Acceleration (g's)	
x-direction	27.8
y-direction	7.3
THIV (m/s)	8
PHD (g's)	32.5
ASI	1.13

Vehicle Damage

	Exterior	
	VDS	FC-4
	CDC	12FDEW1
	Interior	
	OCDI	AS0000000
Post-In	apact Vehicular behavior (deg - gyro @ c.g.)	
	Maximum Roll Angle	-53.3 (observed <
	Maximum Pitch Angle	18.1 (observed <
	Maximum Yaw Angle	

Figure 1. Summary of Results Test #AET07

t=0.000 sec	t=.100sec	t=.300sec	F=.600sec	t=1500ms	t=3800ms
(4) AB SOR B 350 Water Filled Barlier Post Test Alignment 🗣	e i m -	0.8m (32) Nose Piece ABS	-4.4 m (14.4 ft) 	Hardware	3 Sections
General Information			Exit Conditions		
		SAFE TECHNOLOGIES, INC.	Speed (km/		9.7
	'n		Angle	(deg)	
			Occupant risk V	 Construction and a second s	240
		2/15/00	Impact Vel		
Test Article			x-direct		
		Barrier Systems, Inc.	y-direct		
Туре		ABSORB 350 Non-Redirective Crash Co		Acceleration (g's)	I
				tion	-7.7
		4.4 m overall (4 ABSORB sections w / n			
	nension and material		T 1157	tion	7.4
of key elements	S	Section length 1000mm, height 813mm,	DUD (ala)	(m/s)	7.8
		width 610mm, mass 48kg empty / 315kg			
Test Vehicle			ASI		0.64
Туре		Production Model			
Designation		2000P			
Model		1988, Chevrolet 2500 3/4 Ton Pickup	Vehicle Damage)	
Mass (kg)			Exterior		
Curb		1950	VDS		FC-4
Test Inertia	al	1958	CDC		12FCEN2
Dummy(s)		n/a	Interior		
	ic		OCDI.		AS000000
Impact Conditions			Post-Impact Vel	hicular behavlor (deg - gyro @ c.	g.)
		67.2	Maximum		ngle 8.7 (observed <5)
			Maximum	Pitch Angle	0.5 (observed <10)
	ity (kJ)			Yaw Angle	
impact Sever	ity (ito)	MT1			

Figure 21. Summary of Results Test #AET05

Sec. 635.411 Material or product selection.

(a) Federal funds shall not participate, directly or indirectly, in payment for any premium or royalty' on any patented or proprietary material, specification, or process specifically set forth in the plans and specifications for a project, unless:

(1) Such patented or proprietary item is purchased or obtained through competitive bidding with equallysuitable unpatented items; or

(2) The State highway agency certifies either that such patented or proprietary item is essential for synchronization with existing highway facilities, or that no equally suitable alternate exists; or

(3) Such patented or proprietary item is used for research or for a distinctive type of construction on relatively short sections of road for experimental purposes.

(b) When there is available for purchase more than one nonpatented, nonproprietary material, semifinished or finished article or product that will fulfill the requirements for an item of work of a project and these available materials or products are judged to be of satisfactory quality and equally acceptable on the basis of engineering analysis and the anticipated prices for the related item(s) of work are estimated to be approximately the same, the PS&E for the project shall either contain or include by reference the specifications for each such material or product that is considered acceptable for incorporation in the work. If the State highway agency wishes to substitute some other acceptable material or product for the material or product designated by the successful bidder or bid as the lowest alternate, and such substitution results in an increase in costs, there will not be Federal-aid participation in any increase in costs.

(c) A State highway agency may require a specific material or product when there are other acceptable materials and products, when such specific choice is approved by the Division Administrator as being in the public interest. When the Division Administrator's approval is not obtained, the item will be nonparticipating unless bidding procedures are used that establish the unit price of each acceptable alternative. In this case Federal-aid participation will be based on the lowest price so established.

(d) Appendix A sets forth the FHWA requirements regarding (1) the specification of alternative types of culvert pipes, and (2) the number and types of such alternatives which must be set forth in thespecifications for various types of drainage installations.

(e) Reference in specifications and on plans to single trade name materials will not be approved on Federal-aid contracts.